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Note

The Computation of Borel-Type Sums Arising in Scattering Theory

1. INTRODUCTION

It is often necessary, for instance in scattering theory [1], to calculate sums of the
form

f) = e 3 T, )

for a wide range of values of the positive variable x, where {s,} is some fixed convergent
sequence.
We use the notation

Sn > f(X) @)

to indicate relationship (1) and we call f'the Borel transform of the sequence {s,}.
It is known that if
lnig; s, =s  then Ll_l;l; f(x) =s; 3)
see Knopp, [2, p. 472]. From this point of view the relationship s,, <> fis a summation
process which can be used to compute the (generally unknown) value of the limit of
the sequence s, .

The problem presented by sums such as (1) when they occur in physics is usually
the inverse of this: s, is known (generally it is a correlation function) and the task is
to compute the function f.

When x is small, the computational problems are not severe. When x is large, the
computation of f from its defining series presents grave overflow—underflow problems,
and the task is decidedly nontrivial. In many important cases, a technique for
computing f may be obtained by asymptotic analysis.

In what follows we use the notation

5= lim s,

5.~ = sup | s |,
k>n

Fn=238— 8,, the remainder sequence,

N
x"r
@) =s—e=y e

n=0

) 4)
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Ry(x) = —e ) xn?. , the remainder function,
n=N+1 °
() = F(_;(g)_n) , n=0,1,2,... (Pochhammer’s symbol).

The notation for all special functions in this paper is that of [3].
By linearity of the “»” relationship we have

Fn(x) + Ry(x) =5 — e—® i vn_:
n=0 N
=s—eey XLQETL") (5)

2. COMPUTATION OF f FOR X SMALL

If x is not too large, fv is a good approximation to f for N suitably large. We have,
in fact,

o0

L) — ()l = | Ry(x)l < e® Y

n=N-+1

X" 1y
n!

(6)

x xN+ntl1
Lryte® ——— |
ST L GE NI
Using the fact that
w+v)! > ulv!, )
we have

rne TN 2 xn

f(x) — fa(®)] < m Z

nl
n=0 h:

= ry"on(x), ®)
xN+1

W) =T

Thus for a given x we will have m decimal accuracy even for the most slowly
convergent s, if N is such that

VYN 1) < § X 10771, ©
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N suitably large. The use of Stirling’s formula shows that we must have approximately

< Nj 1 ;(w(Nz—i— 9] )1/2 IO—m—1$1/(N+1)_

x (10)

Table I indicates how large x may be taken for a given accuracy and a given N.

TABLE I

Values of g for Given N and m*

m
N 3 4 5 6 7 8 9 10
10 2.0 1.6 1.3 1.0 0.8 0.7
15 3.6 3.1 2.7 23 20 1.7 1.5
20 5.4 4.3 43 3.8 34 3.1 2.8 25
30 9.0 8.3 17 72 6.7 6.2 57 5.3
50 16.3 15.6 14.9 14.3 13.6 13.0 12.5 11.9
70 237 23.0 222 21.5 20.8 20.2 19.5 18.9
100 34.8 340 332 32.5 31.7 31.0 30.3 29.6

% To compute f(x) to m-digit accuracy using fy(x) take x < a.

3. LARGE x

The sequence s, often has an asymptotic or convergent representation of the form

sn~s+?\"[—%l—+%2—+~~], A£0, | Al <1, n—> 0. (11)
In such cases, an asymptotic representation may be obtained for f(x) as x — 0.
To start, we seek to determine the Borel transform of a simple sequence, A*/(n + a);,

a>0,k=12,..

A e & (xA)"(a) e®
o= D k, xA) = fB(x). 12
G @ LT, @ T TR =012

For large x, f*}(x) has the asymptotic behavior

FOI(x) ~ e(i;_): i (k). (1 ‘*rt!l)r (xA)—

r=0

I'(a) e cos(ma) "=} (@), (1 — k), o
TN z rl (=1 (), x—ow, (13)

r=0

see [3, Vol. I, p. 278]. Note that the second term above is finite (convergent).
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The most important case is the case when @ = 1. Then all terms but the first of the
first sum vanish and we have the exact representation

)\n et A-1)

s % + Vk ’
__ z k-1 . e
=T 50 Ry @=0(0), ko
We now use the fact that
S Aps 1
LG, e "0 3

where the A, , may be written in terms of the generalized Bernoulli polynomials as
follows (see Table II)

_ (5= 1 g _
Ara=(, ) B, k<ss=1,23,.. (16)

See Norlund [4, p. 261]. A, can be conveniently calculated from

Ay, s = coefficient of x*1in (x 4+ D)(x +2) - (x + 5 — 1), s=1,2,3,...

an
See [4, p. 147]. Thus
Ar/nk s 201 N 4y (xA)E 4 Uy
8=k
(18)
Uk = O(e_x/x);
TABLE 1I
Ars
k
s 1 2 3 4 5 6 7
1 1
2 1 1
3 2 3 1
4 6 11 6 1
5 24 50 35 10 1
6 120 274 225 85 15 1
7 720 1764 1624 735 175 21 1
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the series being an asymptotic series. (The above estimates can easily be justified in
our result (19)~(20) below by first assuming that s, is a series of terms A*/(n -+ 1),
and then rearranging in terms A"/n*. The present computations seem to be more

straightforward.)

Now using representation (11) and invoking the linearity of the Borel transform

we find that if
anS"{“An[%'i"*—&—”']a n— o,
then

£2_4£§_ Lo
xz 1 x3"r 3

— o = &N x(A-1) _-CL
fO)=e= ¥ It~ en [2L g

k=1
- C - C, + C. - 2C, + 3C, + C.
Clz_‘/\—ls C2: lAg 2, C3= ! /\32 3
— 6C; + 11C, + 6C, + C,
Ty = T

When s, has a known factorial series development

n D, ! D,
Sp=s+ A [(n+1) ECES S |

with, say,
fim | Dy 16 <

then all series are convergent and we have

Spe> s+ eV N Dy(xd)* — e Y Dy ¥(xA)F,
k=1

k=1

, | xA| > 0.

An interesting case is the case when D, = (—B)*, 8 > 0. Then

Be—-m(ei\m — e—B)

B+xx) 7

Spers —
and setting A = 1 gives
d)(l’ n+1, —B) «> (x + Be——x—s)/(x + B)

(19)

(20)

@n

(22)

(23

(2%

(25)

(26)

This Borel transform has a close relationship to some transforms occurring in turbulent

scattering theory.
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4, EXAMPLES

Consider the following incoherent scattering function for a surface with an expo-
nential correlation function:

m@=w§

e

a = [ko(cos 8, -+ cos D)2, 27
B = [ka(sin 8, + sin 6)]?

an
nln?

where 6, is the angle the position vector of the transmitter makes with the vertical,
0 the angle the position vector of the receiver makes with the vertical, o the radar
cross section, k the radar wavelength, and « the correlation length of wave.

S @8
Wehave A = 1,5 = 0, and
C1=C3:C5="'=0,
3 15 35 29)
C2:1’ C4:_'2":3’ C6=§ﬂ2’ Cs= 16 193,
Thus
1 3 11 — 38 50 — 158
¢(“’ﬁ)~&—§+§+ & -+ = + e ®—> 0. 30)

For a = 10, 8 =1 the terms above give 0.01430 with an error 2 X 10-5. Notice
the expansion is not uniform in 8 and the accuracy deteriorates with increasing B.
In any case, a good policy for computing from asymptotic expansions is to stop
before the smallest term; see Knopp [2].

Next consider the incoherent scattering function for a surface with a Gaussian
correlation function

Yo, ==y [e_ﬂ/"] , 31

ntl on
where «, B are as before except a is to be replaced by a/2 in (27). Then

et 1B PR B,

§p=—— = — L P
" n n n? nd nt

; (32

so again A = 1 and

¥(a, B)N_L""' ! _;213 + G _260‘33_{_ ) - (ﬂa — 183261_4663 —39) + e

o —> 00, (33)
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With 8 = },-« = 10 the four terms above give ¥ = 0.1057 with an error of less than
one-half unit in the last decimal place.

5. COMMENTS

The transform pair given in Section 2,
$a =B, n+1; —B) o (x + Be*9)[(x + B) = F(x), (34)
has some of the characteristics of the Gaussian correlation transform pair
t, = e fi"/n & g(x). (35

For B large and x <€ B, f and g are exponentially small in x. Nevertheless, fand g
ultimately behave algebraically in x, /= 1 + o(1), g = (1/x)[1 4 o(1)] as x — c0.
Thus there is a transitional x-region in which fand g move from exponential behavior
to algebraic behavior.

The graph of g given in [1] reflects this, the graph becoming increasingly steep as
B increases in the neighborhood of x = 10.
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